服務(wù)熱線
李經(jīng)理13695310799大型艦船模型平穩(wěn)性提升的技術(shù)路徑與實(shí)踐策略
發(fā)布時(shí)間:2025-06-07 來(lái)源:http://m.taocijian.com/
大型艦船模型的平穩(wěn)性直接關(guān)系到航行姿態(tài)控制、動(dòng)態(tài)性能展示及設(shè)備搭載能力。通過(guò)系統(tǒng)優(yōu)化設(shè)計(jì)、材料革新與智能控制技術(shù)的融合,可使模型在復(fù)雜海況下保持穩(wěn)定航行。
The stationarity of large ship models is directly related to navigation attitude control, dynamic performance display, and equipment carrying capacity. By integrating system optimization design, material innovation, and intelligent control technology, the model can maintain stable navigation in complex sea conditions.
一、船體結(jié)構(gòu)優(yōu)化:流體動(dòng)力學(xué)的精準(zhǔn)應(yīng)用
1、 Optimization of Ship Structure: Precise Application of Fluid Dynamics
線型設(shè)計(jì)創(chuàng)新
Innovation in Linear Design
深V型船艏:通過(guò)CFD仿真優(yōu)化艏部折角線,使波浪劈砍角控制在15°-20°,顯著降低垂向加速度。
Deep V-shaped bow: By optimizing the bow angle line through CFD simulation, the wave splitting angle is controlled at 15 ° -20 °, significantly reducing vertical acceleration.
球鼻艏改良:采用可伸縮式球鼻艏,通過(guò)液壓裝置調(diào)整浸水深度,使興波阻力降低,適用于不同航速工況。
Improvement of bulbous bow: Adopting a retractable bulbous bow, adjusting the immersion depth through hydraulic devices to reduce wave making resistance, suitable for different speed conditions.
重心與浮心調(diào)控
Center of gravity and floating center regulation
重心下移技術(shù):將電池組、壓載物等質(zhì)量塊布置在龍骨下方0.2倍船寬位置,使重心高度低于浮心,恢復(fù)力臂增大,橫傾角減小。
Center of gravity lowering technique: Place the battery pack, ballast, and other mass blocks below the keel at a position 0.2 times the width of the ship, so that the center of gravity is lower than the floating center, increasing the recovery force arm and reducing the roll angle.
動(dòng)態(tài)重心調(diào)節(jié):在模型內(nèi)部設(shè)置移動(dòng)配重塊,通過(guò)伺服電機(jī)實(shí)時(shí)調(diào)整橫向/縱向重心位置,應(yīng)對(duì)突風(fēng)或海流干擾。
Dynamic center of gravity adjustment: Set up mobile counterweights inside the model, and adjust the horizontal/vertical center of gravity position in real time through servo motors to cope with sudden winds or ocean currents interference.
分艙與抗沉設(shè)計(jì)
Cabin division and anti sinking design
采用“五艙制”水密分隔,任一艙室進(jìn)水仍能保持85%以上儲(chǔ)備浮力。
Adopting the "five compartment system" watertight separation, any compartment can still maintain a reserve buoyancy of over 85% when water enters.
二、動(dòng)力系統(tǒng)匹配:推進(jìn)效率與穩(wěn)定性的平衡
2、 Power System Matching: Balancing Propulsion Efficiency and Stability
推進(jìn)器選型與布局
Propulsion selection and layout
對(duì)轉(zhuǎn)槳系統(tǒng):前后螺旋槳轉(zhuǎn)向相反,相互抵消扭矩反應(yīng),使航向保持性提升。
Counterrotating propeller system: The front and rear propellers turn in opposite directions, offsetting each other's torque response and improving heading retention.
噴水推進(jìn)適配:在淺吃水模型中采用泵噴推進(jìn)器,避免傳統(tǒng)螺旋槳的航態(tài)擾動(dòng),使模型在0.5米水深仍能平穩(wěn)航行。
Water jet propulsion adaptation: Pump jet propulsion is used in shallow draft models to avoid the navigation disturbance of traditional propellers, allowing the model to navigate smoothly at a depth of 0.5 meters.
動(dòng)力輸出控制
Power output control
矢量推進(jìn)技術(shù):通過(guò)舵機(jī)調(diào)整推進(jìn)器角度,實(shí)現(xiàn)原地回轉(zhuǎn)、側(cè)移等復(fù)雜動(dòng)作。
Vector propulsion technology: By adjusting the angle of the thruster through the servo, complex actions such as stationary rotation and lateral movement can be achieved
雙機(jī)差速控制:左右推進(jìn)器獨(dú)立調(diào)速,利用速度差產(chǎn)生轉(zhuǎn)向力矩,減少舵面偏轉(zhuǎn)引起的橫搖。
Dual engine differential control: The left and right thrusters independently adjust speed, using the speed difference to generate steering torque and reduce roll caused by rudder deflection.
三、智能平衡系統(tǒng)集成:主動(dòng)穩(wěn)定控制
3、 Intelligent Balance System Integration: Active Stability Control
陀螺儀穩(wěn)定裝置
Gyroscope stabilization device
安裝三軸陀螺儀與伺服電機(jī)聯(lián)動(dòng)系統(tǒng),實(shí)時(shí)檢測(cè)橫滾、俯仰角速度,通過(guò)反向力矩補(bǔ)償使姿態(tài)穩(wěn)定。
Install a three-axis gyroscope and servo motor linkage system to real-time detect roll and pitch angular velocities, and stabilize the posture through reverse torque compensation.
壓載水艙自動(dòng)調(diào)節(jié)
Automatic adjustment of ballast water tank
設(shè)置可變?nèi)莘e壓載水艙,通過(guò)水泵快速調(diào)節(jié)艙內(nèi)水量,實(shí)現(xiàn)縱傾調(diào)整。
Set up a variable volume ballast water tank and quickly adjust the water volume inside the tank through a water pump to achieve longitudinal tilt adjustment.
鰭板穩(wěn)定技術(shù)
Fin stabilization technology
仿生設(shè)計(jì)可收放式減搖鰭,根據(jù)航速與海況自動(dòng)調(diào)整攻角。
Biomimetic design with retractable anti roll fins that automatically adjust the angle of attack based on speed and sea conditions.
四、材料與工藝革新:輕量化與剛性提升
4、 Material and Process Innovation: Lightweight and Rigid Enhancement
復(fù)合材料應(yīng)用
Application of composite materials
碳纖維增強(qiáng)層合板:采用真空導(dǎo)入工藝制作船體,彎曲剛度提升,重量減輕。
Carbon fiber reinforced laminates: The hull is made using vacuum import technology, which increases bending stiffness and reduces weight.
泡沫芯材優(yōu)化:使用PMI硬質(zhì)泡沫作為夾層材料,密度低,抗剪切強(qiáng)度高,有效防止船體變形。
Optimization of foam core material: PMI hard foam is used as the interlayer material, with low density and high shear strength, effectively preventing ship deformation.
連接件強(qiáng)化設(shè)計(jì)
Strengthening design of connectors
甲板與船體采用榫卯結(jié)構(gòu)+環(huán)氧樹(shù)脂粘接,剪切強(qiáng)度提升。
The deck and hull are constructed with mortise and tenon joints and bonded with epoxy resin, which enhances the shear strength.
五、測(cè)試與調(diào)校:數(shù)據(jù)驅(qū)動(dòng)的優(yōu)化迭代
5、 Testing and tuning: data-driven optimization iteration
水池試驗(yàn)驗(yàn)證
Pool test verification
在拖曳水池中進(jìn)行自航模試驗(yàn),通過(guò)六自由度運(yùn)動(dòng)測(cè)量系統(tǒng)采集航行數(shù)據(jù),優(yōu)化船體線型與推進(jìn)參數(shù)。
Conduct a self driving model test in a towing pool, collect navigation data through a six degree of freedom motion measurement system, and optimize the hull shape and propulsion parameters.
實(shí)海環(huán)境調(diào)校
Real sea environment calibration
在近海試驗(yàn)場(chǎng)進(jìn)行多工況測(cè)試,利用慣性導(dǎo)航系統(tǒng)記錄航跡,通過(guò)機(jī)器學(xué)習(xí)算法建立海況-姿態(tài)響應(yīng)模型,實(shí)現(xiàn)參數(shù)自適應(yīng)調(diào)節(jié)。
Conduct multi condition testing at the offshore test site, record the trajectory using an inertial navigation system, establish a sea state attitude response model through machine learning algorithms, and achieve parameter adaptive adjustment.
振動(dòng)與噪聲控制
Vibration and noise control
安裝加速度傳感器監(jiān)測(cè)振動(dòng)頻譜,對(duì)動(dòng)力系統(tǒng)進(jìn)行動(dòng)平衡校正,使船體振動(dòng)加速度降至0.5g以下,提升設(shè)備運(yùn)行穩(wěn)定性。
Install acceleration sensors to monitor the vibration spectrum, perform dynamic balance correction on the power system, reduce the ship's vibration acceleration to below 0.5g, and improve the stability of equipment operation.
本文由大型艦船模型友情奉獻(xiàn).更多有關(guān)的知識(shí)請(qǐng)點(diǎn)擊:http://m.taocijian.com我們將會(huì)對(duì)您提出的疑問(wèn)進(jìn)行詳細(xì)的解答,歡迎您登錄網(wǎng)站留言.
This article is a friendly contribution from a large aircraft model For more information, please click: http://m.taocijian.com We will provide detailed answers to your questions. You are welcome to log in to our website and leave a message
熱門產(chǎn)品 / HOT PRODUCT
新聞推薦 / NEWS RECOMMENDATIONS